层模型
是对各井同一连通储集层连接而成的砂层体的储渗特征的定量展不。它是建立储集层地质模型和油藏地质模型的基础。
从上述概念可以看出,无论是油层模型、油藏模型或井模型,其核心都是储集层地质模型。只要准确把握构建出储集层地质模型,其它模型都可以比较容易地建立。因此,储集层建模是油藏描述的一个重要内容,也是储集层研究结果的具体体现。
有效的交流平台。地质模型的存在,为地质师、油藏工程师、钻井师提供了一个交流的平台。这些不同领域的工作人员关心的问题不同,行业语言也不净相同,但是当他们聚集在一起对着同一个地质模型进行交流的时候,相同的讨论目标(这里指地质模型)会促进他们之间的相互理解,同时地质模型的可视化也可以提高他们对油藏的认识。当然模型的可视化也可以帮助我们QC地质模型。如果看到很奇怪的特征就说明模型的什么地方出错了。
开发初期,我们关心的问题是在那里布井位,如何优化开发方案。也就是说我们想把井钻在理想的地方。这一阶段的地质模型需要进一步细分层内的地层单元或流动单元。详细描述储层的地质构造。到了开发晚期,要解决的主要问题是:剩余油在哪儿,如何把他们有效地开采出来。这时候往往需要把整个油田的模型细分成多个独立的小模型。模型需要很高精细度,一般会划分到*7级层序界面,比如单个河道,但个流动单元。这时的模型需要整合生产资料,也就是说需要进行历史拟合。这样地质模型的不确定性才会进一步降低,而预测功能相应增强。
地貌与工程建设的关系:
同海拔高度对工程建设的影响不同。在海拔较高的地区,自然条件恶劣,生态环境脆弱,严重影响着工程的施工条件和使用效益。如已顺利通车的青藏铁路格尔木至拉萨段,在长达1142千米的线路上,约有85%的路段平均海拔**过了4000米。由于海拔高,施工条件十分恶劣。高寒缺氧、多冻土、生态脆弱是当时制约青藏铁路建设的三大世界性工程难题。在海拔较低的临水地区,由于地下水埋深都比较浅,施工中容易发生地面沉降和海水倒灌等问题,增加了施工难度和防潮、防盐碱的费用。
地质基础影响工程的选址和施工建设。水库大坝、高层建筑、铁路、公路都要求地质基础坚硬。在平原地区,因土层深厚,地基松软,多流沙层,在施工时需对地基进行加固和防水。20世纪70年代末上海宝钢一期工程建设时,曾把直径为900毫米的钢管打入60米深的地下做支撑,效果显著,使宝钢成为上海近期地面沉降幅度较小的地区。在喀斯特地貌区,因岩层的渗水性强,而且多地下溶洞,在水利工程建设时如果选址不当,容易出现水库渗水、大坝开裂等问题。为确保举世瞩目的三峡水利枢纽工程的安全,在选定坝址时就对当地的地质条件进行了周密的勘探和考察论证。
地表起伏直接关系到工程的造价、施工难度和使用效益。在平原和高原地区,地表起伏较小,有利于工程建设的选址、选线与施工。在丘陵和山区,相对高差大,地形陡峭,平整成本高,而且易发生地质灾害,不利于大型工程的选址和选线。20世纪70年代初建成的成昆铁路,由于所经地区大部分都是丘陵和山地,桥梁和隧道竟占总长度的40%以上,建设成本大大增加。
海岸地貌与港口建设关系密切。由海积地貌形成的平原海岸,岸线开阔,坡度较小,有利于港口建设。但由于泥沙淤积旺盛,航道较浅,不利于大型船只泊靠。由海蚀地貌形成的山地丘陵海岸,水深坡陡,适宜建设供大型船只泊靠的深水码头。但这种码头潮高浪大,泊稳条件相对较差。我国新建的东海洋山深水港利用大、小洋山岛链作为**屏障,水深浪小,水域广阔,可供大型船只泊靠,现已成为我国大的集装箱港。